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A mathematical model is formulated to describe the initiation and evolution of intense
unsteady vorticity in a low Mach number (M), weakly viscous internal flow sustained
by mass addition through the sidewall of a long, narrow cylinder. An O(M) axial
acoustic velocity disturbance, generated by a prescribed harmonic transient endwall
velocity, interacts with the basically inviscid rotational steady injected flow to generate
time-dependent vorticity at the sidewall. The steady radial velocity component con-
vects the vorticity into the flow. The axial velocity associated with the vorticity field
varies across the cylinder radius and in particular has an instantaneous oscillatory
spatial distribution with a characteristic wavelength O(M) smaller than the radius.
Weak viscous effects cause the vorticity to diffuse on the small radial length scale as
it is convected from the wall toward the axis. The magnitude of the transient vorticity
field is larger by O(M−1) than that in the steady flow.

An initial-boundary-value formulation is employed to find nonlinear unsteady solu-
tions when a pressure node exists at the downstream exit of the cylinder. The complete
velocity consists of a superposition of the steady flow, an acoustic (irrotational) field
and the rotational component, all of the same magnitude.

1. Introduction
Intense transient vorticity can be generated in a tubular internal flow by an

interaction between a forced acoustic field and fluid injected normally from the
cylinder sidewall. This occurs at a given axial location because the transient axial
gradient of the acoustic pressure drives time-dependent wall shear stress variations.
The resulting radial gradient of the axial velocity is convected into the cylinder by
the injected flow field. As a result, one finds co-existing irrotational and rotational
disturbances of the same magnitude.

The spatial distribution and time-history of the vorticity depend upon the char-
acteristic amplitude of the wall injection speed (V ′r0), the length (L′) and radius (R′)
of the cylinder, the frequency of the acoustic forcing (ω′), and the fluid properties.
It follows that the crucial non-dimensional parameters include, the flow Reynolds
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(Re) and Mach (M) numbers along with the aspect ratio (δ) and a frequency (ω), all
defined below.

The intense transient vorticity is confined to a viscous acoustic boundary layer,
small in transverse dimension with respect to the cylinder radius, when the wall
injection speed is sufficiently small. As the injection rate increases, the boundary
layer thickness grows and the importance of viscous forces is reduced, relative to
the axial pressure gradient effect. Eventually, the boundary layer concept is invalid,
the flow is only weakly viscous and transient vorticity is present throughout the
cylinder. One objective of the present work is to describe a mathematical formulation
based on perturbation methods, valid for wall injection rates sufficiently large to
preclude the viability of the viscous acoustic boundary layer model. Solutions to
the model describe the time-history of the co-existing acoustic and rotational flow
fields.

Flandro (1974) provides an early assessment of the importance of vorticity in an
acoustic boundary layer. He studies the impact of a small axial pressure gradient,
varying harmonically in time, on the viscous processes occuring adjacent to a surface
from which a steady, spatially uniform transverse injection occurs. A linear equation
for axial velocity contains a balance of convection, pressure gradient forces and
viscous diffusion. The solution describes a shear wave convecting away from the wall,
with an amplitude that is damped by viscous effects. One finds intense, transient
vorticity in the boundary layer, relative to the weaker steady vorticity associated with
the inviscid, rotational Culick (1966) solution valid beyond the boundary layer. The
solution is valid only for small injection Mach number Mb = O(R

−1/2
A ) where RA � 1

is the appropriate acoustic Reynolds number for the chamber. Related work has been
described by Tien (1972) and Flandro (1986).

Important extensions of Flandro’s concepts have been developed by Zinn and
coworkers (Chen, Hegde & Zinn 1990; Hegde, Chen & Zinn 1986; Hegde & Zinn
1986; Matta & Zinn 1993) in the context of acoustic boundary layers that are thin
relative to the transverse dimension of the internal flow. These research efforts are
motivated by the need to understand how energy is transferred from the axial acoustic
field to the fluid injected from the sidewall as the latter is turned toward the axial
flow direction from its initially transverse motion (flow turning). Hegde et al. (1986)
recognized explicitly that for sufficiently large injection rates, ‘. . . the boundary layer
may encompass a significant portion of the duct. . . ’ and that in this case ‘. . . viscous
effects must then be included in the analysis of the (entire chamber)’. However, there
was no specific modelling of this particular situation.

The pervasive presence of rotational disturbances throughout an injected internal
flow was first demonstrated in the experiments of Brown and co-workers (Brown et
al. 1986a, b; Brown & Shaeffer 1992). They injected gas through the porous sidewall
of a cylinder/nozzle configuration. A periodic mass injection technique is used to
induce single-frequency disturbances into the system. Hot-wire measurements of the
time-averaged axial velocity field at numerous axial and radial locations are used
to show that large, local radial gradients of the time-averaged axial velocity are
present across the entire cylinder cross-section, with a characteristic length scale far
smaller than the radius. The associated radial spatial oscillations in the axial speed
are not compatible with profiles predicted by a traditional acoustic analysis (Culick &
Yang 1992), although associated pressure variations appear to be purely acoustic in
character. The experimental observations suggest the need for a mathematical model
of the disturbed, sidewall-injected flow system that can deal with co-existing acoustic
and rotational flow processes throughout the chamber geometry, as well as resolve
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transverse flow processes on radial length scales short with respect to the overall
transverse dimension of the chamber geometry.

Vuillot & Avalon (1991) and Vuillot (1995) have repeatedly emphasized the impor-
tance of vorticity in these injected internal unsteady flows. They point out that the
assumptions built into the acoustic stability theory reviewed extensively by Culick &
Yang (1992) have the effect of ‘. . . cancelling all trace of vorticity of the flows’. In
particular, the velocity perturbation is proportional to the gradient of the pressure
perturbation. Clearly, an irrotational formulation cannot account for the highly ro-
tational, unsteady flow field observed in experiments, and seen in the computational
results described below.

Casalis, Avalon & Pineau (1998) and Avalon, Casalis & Grifford (1998) have
included rotational disturbances in a purely hydrodynamic stability study of planar
flow in a channel with steady sidewall injection. Non-parallel stability theory is used
to do a linear analysis of the steady solution (see Taylor 1956). Results are sensitive
to the transverse velocity component of the steady flow, neglected in many traditional
studies of acoustic stability (see Culick & Yang 1992) and demonstrate the importance
of non-parallel affects.

Flandro & Roach (1992) describe an initial attempt at developing an analytically
based model of the Brown and co-worker experiments. A more complete version
is given in Flandro (1995a) where a theory is developed for co-existing transient
vorticity and acoustic waves throughout a cylindrical chamber. The steady, inviscid
rotational Culick (1966) solution, associated with a uniform injection Mach number
Mb � 1, is disturbed by a smaller O(ε) acoustic velocity that varies harmonically in
time. Perturbation methods valid for Mb → 0 and a linear stability approach are used
to derive an inviscid, linear, small-disturbance equation for the rotational part of the
axial velocity, which is assumed to have quasi-steady time dependence.

The solution satisfies the no-slip condition on the sidewall, and symmetry conditions
on the axis. The equation itself can be used to show that the amplitude of the vorticity
generated at the sidewall surface is O(ε/M2

b ) relative to the vorticity associated with
the steady Culick profiles. Hence for sufficiently large values of ε the transient
vorticity can be more intense than is the steady field vorticity. The rotational axial
velocity solution is characterized by shear waves of small radial length scale that
are convected into the cylinder by the steady Culick velocity components. The time-
averaged axial velocity variation with radius is qualitatively similar to the spatial
oscillations observed experimentally by Brown et al. (1986a, b) and Brown & Shaeffer
(1992).

Flandro (1995a) notes that viscous effects will have a minor impact on the inviscid
rotational solution for the vorticity distribution, using an argument based on his
earlier viscous acoustic boundary layer theory, Flandro (1974). That work is valid
mathematically only adjacent to the injection surface because the transverse speed is
assumed to be constant. Hence it appears unlikely that the results can be applied to
the entire cylinder, where the radial speed must vanish at the centreline.

A more systematic effort is made to consider the impact of viscosity in Flandro
(1995b), in the context of small-disturbance linear stability theory. As in the previous
paper the asymptotic methods, valid for Mb → 0, are applied in an intuitive manner.
It is not always apparent why terms in equations are included or neglected. The
results of the linear analysis suggest that viscous effects are most important near
the centreline of the cylinder, a result quite different from conclusions of the present
work.

Majdalani & Van Moorhem (1997) also describe a small-disturbance linear stability
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theory that includes the impact of viscosity on the vorticity distribution. Their formu-
lation is based on a limit of large acoustic Reynolds number with the injection Mach
number Mb fixed. Solutions are assumed to have quasi-steady time dependence. The
results can be interpreted to mean that vorticity is weak but pervasive throughout the
cylindrical flow.

More recently, Majdalani, Flandro & Roh (1998) and Majdalani (1998) have
compared the earlier results of Flandro (1995a) and Majdalani & Van Moorhem
(1997) based on two different asymptotic methodologies with numerical solutions.
Both studies of analytical solutions compare favourably with these to the full Navier–
Stokes equation. These results, once again, confirm that a complete understanding of
the linear instability process in an unsteady injected internal flow requires that the
full transverse velocity field is retained in the mathematical model.

Significant efforts have been made to develop multidimensional computational
models for wall-injected internal flow including the resolution of the identifiable layers
containing rotational flow. Baum & Levine (1987) used the Navier–Stokes equations
to evaluate the internal flow response to imposed disturbances. Baum (1989, 1990) has
used the Reynolds-averaged compressible Navier–Stokes equations, including a k–ε
model, to find initial value solutions for the transient flow in a cylindrical geometry.
Sidewall injection is steady and uniform and disturbances are created by a prescribed
harmonic variation of the axial speed on the endwall (piston effect). Results are
obtained for RA = 3 × 107 and Mb = 2.2 × 10−3. Acoustic boundary layers adjacent
to the injecting surface, containing significant radial gradients of the axial velocity,
appear to be quite thin, usually confined to a few percent of the cylinder radius.
In one case vorticity is seen as far as about 20% of the radius from the sidewall.
These results are quite different from the experimental observations of Brown and
co-workers which appear to include co-existing vorticity and acoustic waves across
the entire cylinder. The difference likely rises from (a) the distribution of grid points
across the cylinder (most are packed close to the sidewall in anticipation of traditional
acoustic boundary layer behaviour), and (b) short run times (not enough time has
elapsed after the introduction of the disturbance to convect the vorticity generated at
the sidewall very far out into the cylinder). The former implies that the computation
can resolve the short length scale radial gradients only in the vicinity of the sidewall.
Even if the vorticity convects beyond the region with sufficient grid resolution, its
presence cannot be discriminated by the larger grids in the central portion of the
cylinder.

Vuillot & Avalon (1991) use laminar Navier–Stokes equations to develop an initial
value study of flow in a planar rectangular chamber where a prescribed harmonic
disturbance in pressure is applied on the exit plane. The calculation is carried out for
RA = 3 × 104 and Mb = 0.0098, corresponding to a relatively viscous system. Here
again the transverse gridding is packed near the wall, although a finer resolution is
present further out into the field than in the Baum work. The computation times are
long enough for the vorticity generated at the wall to reach the centreline. Significant
transverse gradients in the axial velocity (vorticity) are found out to about 50% of
the half-height of the rectangle.

Smith, Roach & Flandro (1993) also find vorticity present in a large portion of
a cylindrical geometry. Their computation is done to simulate the experiments of
Brown et al. (1986a, b) and Brown & Shaeffer (1992). Significant radial gradients in
the axial velocity are seen about halfway out toward the centreline. Here again, the
run times are sufficiently long to move the vorticity well away from the injection
surface, and the gridding distribution enables it to be resolved, at least part way out
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into the cylinder. The authors suggest that the spatial resolution may not be adequate
further out.

Acoustic processes in a thermally active internal flow with combustion have been
studied computationally by Tseng et al. (1994), based on the use of the compressible
Navier–Stokes equations. Steady, spatially uniform injection of a propane–air mixture
occurs at the porous sidewall of a planar, rectangular geometry. A small (2%) time-
dependent harmonic pressure disturbance is applied at either the head end (travelling
wave solutions) or the exit plane (standing wave solutions) of the chamber. Vorticity,
as represented by large transverse gradients in the axial velocity, is found in a thin
layer near the injecting surface, on the order of 10–15% of the channel half-height.
This confinement of the rotational flow distribution is due in part to short run times
and in part to a coarse grid distribution in the central portion of the rectangle. It is
important to note that flame resolution requires a significant number of points near
the injection surface, and not surprisingly the vorticity is seen most strongly in this
highly resolved region.

Roh & Yang (1995) have done a similar computation for combustion processes
associated with double base propellants. Longer run times and better spatial resolution
leads to the appearance of vorticity through 75% of the half-height of the rectangular
height.

The modelling in the present paper is described in terms of a quasi-analytical
asymptotic analysis of an initial-boundary value problem with imposed boundary
disturbances of significant magnitude. In contrast to the previously cited small-
disturbance linear-stability-based theories with quasi-steady time dependence, we
study an evolving fully transient flow including the complete acoustic field compatible
with the cylindrical geometry and imposed boundary conditions.

Our work focuses on the fluid dynamics occurring in a finite length (L′) cylinder of
radius R′ with one open end. Steady radial mass addition from the sidewall creates
a primarily inviscid rotational internal flow which is affected weakly by viscosity
(Taylor 1956; Culick 1966). The characteristic axial flow Reynolds number, and the
axial flow Mach number are large and small respectively. The ‘large’ or ‘massive’
injection velocity needed to diminish the significance of viscosity near the sidewall has
been considered in the context of injected boundary layer theory by Cole & Aroestry
(1968).

Imposed time-dependent axial velocity disturbances on the closed end add transient
energy to the internal flow and generate an acoustic field present throughout the
cylinder. The characteristic magnitude of the imposed disturbance is chosen to be
the same as that of the steady injection-induced axial velocity in order to study a
relatively large transient response of the system. Axial acoustic waves interact with
injected fluid particles to create intense transient axially distributed vorticity on the
sidewall, far larger than that of the primarily inviscid steady rotational flow produced
by the sidewall injection alone. The vorticity is convected into the cylinder along
pathlines associated with the internal flow.

The transient vorticity is confined to a weakly viscous ‘transition layer’ adjacent to
the wall for sufficiently small values of the wall injection speed. This layer thickness
is large compared to a viscous acoustic layer, but smaller than the cylinder radius.
The convected vorticity is diffused on a transverse scale that is small compared to the
transition layer dimension. However, over the latter scale, the accumulated impact of
weak diffusion damps out the intense transient vorticity. Beyond the transition layer
one finds a ‘core’ flow consisting of the irrotational acoustic field and the less intense
steady vorticity.
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Transient vorticity is present throughout the cylinder when the wall injection speed
is sufficiently large, as defined explicitly by the model. In this case the transient flow
field is weakly viscous across the entire cylinder. Again, vorticity is diffused on a
short length scale, but the accumulated viscous damping is not sufficient to prevent
the eventual appearance of vorticity at all radial locations except on the axis, where
symmetry requires a zero vorticity value.

The mathematical model is formulated in terms of an initial value problem with
explicit time-dependent forcing conditions on the closed end of the cylinder. A
multiple-scale approach is used to describe co-existing phenomena (steady, invis-
cid rotational flow field; planar, irrotational acoustic wave field; transient, weakly
viscous rotational flow field) evolving simultaneously on two disparate transverse
dimensions.

Solutions for the transition layer/core model are given in analytical terms, based on
asymptotic expansions in the small axial flow Mach number (M). The planar acoustic
pressure and axial velocity solutions are eigenfunction expansions appropriate to the
geometry and prescribed boundary conditions. Both non-resonant and resonant cases
are included. The axial speed in the transition layer depends upon two transverse
variables of disparate size. A small scale variable is used to describe relative short-
wavelength spatial oscillations embedded within the transition layer. The amplitude
of the oscillations, dependent on the larger scale variable, vanishes exponentially fast
as the transition layer edge is approached. Asymptotic properties of the solution are
used to define the parameter conditions for which the transition layer/core concept
fails, and for which vorticity can be present across the entire cylinder.

A multiple scale approach is used to formulate the model for the co-existing
acoustic and rotational flow fields that evolve simultaneously in the cylinder when
vorticity may be present at all radial locations. Planar acoustic solutions, composed
of a forced mode and eigenmodes, are derived from a linear wave equation driven by
a forced endwall boundary condition. The lowest-order rotational part of the axial
speed field is described by an inviscid linear first-order wave equation. This implies
that vorticity generated at the sidewall by an axial pressur gradient/injected fluid
interaction is convected toward the cylinder axis by the radial component of the
injected flow field. For sufficiently small times a sharp front separates the intense
transient vorticity initiated at the wall from the much weaker steady vorticity of the
Culick (1966) solution. Eventually, the front location asymptotes to the cylinder axis
and vorticity is present everywhere.

Although the lowest-order vorticity transport process is described by an inviscid
equation, a higher-order analysis is used to prove that weak viscous and nonlinear
effects are pervasive in the flow field for useful values of the significant parameters,
including the relatively large boundary disturbance considered here. In particular,
vorticity is diffused by viscosity on a length scale short compared with the cylinder
radius. The complete initial-value solution for the rotational part of the axial speed
is derived from a nonlinear diffusion equation using direct numerical computations.
Results are given for several parameter values at various locations in the cylinder and
describe how the energy input at the endwall is partitioned between the acoustic and
rotational components of the flow field.

Evaluation and interpretation of the results show that a complex vorticity distri-
bution is present throughout the cylinder sufficiently long after the disturbance is
initiated at the endwall. In part the spatial variations result from the inclusion of
numerous Fourier modes in the acoustic solutions that are responsible for the appear-
ance of the vorticity. Fully computational methods are used by Kirkkopru, Kassoy
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Figure 1. The cylindrical rocket engine chamber model of length L′, diameter D′, a left closed end
and a right open end with pressure condition P ′ = P ′0 = const. The left end has a condition that
Vz = A sinωt where ω′ is on the order of the first few axial acoustic modes. The curves within the
chamber indicate example pathlines at a particular time.

& Zhao (1995, 1996) and Kirkkopru et al. (1999) to provide supporting evidence for
the solutions found here by quasi-analytical means.

2. Mathematical formulation
An internal flow arising from time-invariant sidewall mass addition in a cylindrical

tube of length L′ and diameter D′ is shown schematically in figure 1. The oscillatory
endwall disturbance in the axial speed V ′z is the source of acoustic waves in the
cylinder. A pressure node boundary condition is assumed at the downstream end of
the tube.

The complete non-dimensional equations describing the fluid dynamics and acous-
tics for an axisymmetric system can be written in the form

0 =
∂ρ

∂t
+M
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P = ρT (2.5)
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where

D

Dt
=

∂

∂t
+M

(
Vr
∂

∂r
+ Vz

∂

∂z

)
,

and Φ is the viscous dissipation function. The non-dimensional variables are defined
in terms of dimensional quantities (with a prime) by

ρ =
ρ′

ρ′0
, P =

P ′

P ′0
, T =

T ′

T ′0
, Vr =

V ′r
V ′r0

, Vz =
V ′z
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,
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, t =
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, k =

k′

k′0
, µ =
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, Cv =
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.

 (2.6)

The reference value P ′0 is the initial static pressure in the cylinder, while the analogous
density and temperature values ρ′0, T ′0 respectively represent properties of the injected
fluid. The known characteristic injection speed V ′r0 is related to the derived character-
istic axial speed V ′z0 by the approximate mass conservation relationship V ′z0 = δV ′r0.
Here, the large aspect ratio δ = L′/R′ � 1 and R′ is the tube radius. Characteristic
length scales for the axial and radial variables are defined by L′ and R′ respectively.
Time is non-dimensionalized with respect to the axial acoustic time t′a = L′/C ′0,
where C ′0 = (γR′T ′0)1/2 is the characteristic sound speed and R′ is the gas constant.
The reference material properties k′0, µ′0 and C ′v0 are defined at temperature T ′0. The
parameter γ is the ratio of specific heats and

Re =
ρ′0V ′z0L′

µ′0
, P r =

µ′0C ′p0
k′0

, M =
V ′z0
C ′0
, (2.7)

where typically the Prandtl number Pr = O(1), the axial Mach number M � 1 and
the axial flow Reynolds number Re� 1. It is noted that the Reynolds number used
here is O(M) smaller than the acoustic Reynolds number.

Initially, a steady flow exists in the cylinder, driven by spatially distributed normal
injection from the wall where the no-slip condition is satisfied. Symmetry prevails
along the axis. The mathematical form of the steady flow boundary conditions may
be written as

r = 0: Vr =
∂Vz

∂r
= 0, (2.8)

r = 1: Vr = −Vrw(z), Vz = 0, T = 1, (2.9)

z = 0: Vz = 0, (2.10)

z = 1: P = 1. (2.11)

The steady flow is disturbed at z = 0 by imposing a harmonic endwall axial velocity
variation that is independent of the radial coordinate,

z = 0: Vz = A sinωt; t> 0: 06 r6 1, (2.12)

where the amplitude A = O(1).
It should be noted that the imposed endwall disturbance, of the same order

of magnitude as that of the steady axial speed, is the source of mechanical and
thermodynamical disturbances of like magnitude in the gas. These relatively large
variations are described by a weakly nonlinear theory that differs from the small-
disturbance theory used by Flandro (1995b).

The sidewall injection is strong in the sense that V ′r0 � V ′z0/Re1/2 (see Cole &



Acoustically generated vorticity in an internal flow 255

Aroesty 1968), which implies that the parameter combination seen in (2.2) and (2.3),
δ2/Re � 1. The hard blowing condition implies that the flow is basically inviscid,
even near the injecting surface, so that no acoustic boundary layer is expected.

3. Steady-state flow
The steady-state flow generated by time-independent mass addition on the sidewall

can be described in terms of the asymptotic expansions:

(P , ρ, T ) ∼ 1 +M2(P0s, ρ0s, T0s) + o(M2), (Vz, Vr) ∼ (Vz0s, Vr0s) + o(1), (3.1)

valid in the limit M → 0. The expansion in (3.1) can be used in (2.1)–(2.5) to find the
leading-order equations

1

r

∂(rVr0s)

∂r
+
∂Vz0s

∂z
= 0, (3.2)

P0s = P0s(z), (3.3)

Vr0s
∂Vz0s

∂r
+ Vz0s

∂Vz0s

∂z
= −1

γ

∂P0s

∂z
. (3.4)

These describe an incompressible, inviscid, rotational flow that satifies the no-slip
and injection boundary conditions on the sidewall and symmetry conditions on the
axis, given in (2.8)–(2.11). The transport terms are excluded from the leading-order
equations because δ2/Re � 1. Equation (3.3) arises because the aspect ratio δ � 1.
Solutions for the radial and axial velocity, as well as the pressure distribution can be
written in the form

Vr0s = −Vrw(z)

r
sin( 1

2
π r2), (3.5)

Vz0s =

(
π

∫ z

0

Vrw(τ)dτ

)
cos( 1

2
π r2), (3.6)

P0s = γπ2

∫ 1

z

[
Vrw(ẑ)

∫ ẑ

0

Vrw(τ)dτ

]
dẑ, (3.7)

where −Vrw(z) > 0 is an arbitary time-independent sidewall injection distribution.
Related solutions can be found in Culick (1966) and Taylor (1956). It should be
noted that Balakrishnan, Liñán & Williams (1991) obtained a fully compressible
solution valid for M = O(1) < 1.

4. Core/transition layer solutions
The viscous acoustic boundary layer theory of Flandro (1974) describes intense

transient vorticity generation and evolution in a layer of non-dimensional thickness

O(R
−1/2
A ) where the acoustic Reynolds number RA ≡ Re/M � 1. The solution is valid

formally for a small injection Mach number Mb = O(R
−1/2
A ).

It is of interest to develop a theory for larger injection rates, when the transverse
dimension of the layer containing vorticity remains smaller than the radius of the
cylinder, but is larger than that permitted by the model of Flandro (1974). The con-
ceptual approach focuses first on a central ‘core’ region containing the weak vorticity
of the steady solutions in (3.5)–(3.7) and irrotational linear acoustic disturbances
of the same magnitude, driven by the prescribed endwall disturbances in (2.12). The
thinner transition layer contains the intense transient vorticity. A multiple-length-scale
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asymptotic analysis, used to develop the solutions, describes how weak but pervasive
viscosity affects the flow physics in the transition layer.

The asymptotic expansions for the unsteady core flow can be written as

(P , ρ, T ) ∼ 1 +
∑
n=0

Mn+1(P̃n, ρ̃n, T̃n), (Vr, Vz) ∼ (Vr0s, Vz0s) +
∑
n=0

Mn(Ṽrn, Ṽzn) (4.1)

in the limit M → 0. Equation (4.1) can be used in (2.1)–(2.5) to derive the lowest-order
equations, valid in the limit M → 0, with δ2/Re→ 0,

∂ρ̃0

∂t
+

1

r

∂(rṼr0)

∂r
+
∂Ṽz0

∂z
= 0, (4.2)

∂Ṽz0

∂t
= −1

γ

∂P̃0

∂z
(4.3)

∂T̃0

∂t
= (γ − 1)

∂ρ̃0

∂t
, (4.4)

ρ̃0 = P̃0 + T̃0. (4.5)

The velocity components in (4.2) are composed of both a steady state and a

transient part of the same magnitude: (Vz0, Vr0) = (Vz0s, Vr0s) + (Ṽz0, Ṽr0). Subtraction
of the steady-state equations (3.2)–(3.4) from (4.2)–(4.5) provides the transient acoustic
mathematical problem. The boundary condition in (2.12), which is independent of the

radial variable, implies that the radial speed, Ṽr0 = 0.

4.1. The planar acoustic solution in the core

The transient part of the leading-order equations can be combined into a planar wave
equation for the axial velocity component:

∂2Ṽz0

∂t2
=
∂2Ṽz0

∂z2
(4.6)

subject to the initial and boundary conditions

t = 0: Ṽz0 = 0,
∂Ṽz0

∂t
= 0, (4.7)

z = 0: Ṽz0 = A sinωt, (4.8)

z = 1:
∂Ṽz0

∂z
= 0, (4.9)

where (4.9) is obtained from (2.11) and use of (4.2), (4.4), and (4.5). The simplicity of
the equation can be attributed to the large-aspect-ratio condition δ � 1.

The general solution for Ṽz0 is

Ṽz0(z, t) = A sinωt+

∞∑
n=0,n6=n∗

2Aω

b2
n − ω2

(
ω

bn
sinωt− sin bnt

)
sin bnz

−
((

1

bn∗

)
sin bn∗t+ t cos bn∗t

)
sin bn∗z, (4.10)

where bn = (n + 1
2
)π. The last term describes a resonant effect present only when

ω = bn∗ and cannot be found from a quasi-steady analysis. The solution provides
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ω ω
′
(Hz) Properties Primary response

1 159 stable axial + quasi-steady modes
1.4 223 beats quasi-steady modes
π/2 250 axial amplification linear growth

Table 1. Acoustic response properties for several driving frequencies.
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Figure 2. Acoustic velocity, V̂z0 in the core of the cylinder at z = 0.5 for three difference
oscillation frequencies: ω = 1 (a), ω = 1.4 (b), and ω = π/2 (c).

insight into the properties of the acoustical field compatible with the cylindrical
geometry and prescribed boundary conditions.

(i) The first term itself and the second part of the non-resonant Fourier series
represent quasi-steady motion at the driving frequency. The other Fourier series terms
can each be decomposed into two counter-propagating planar travelling waves.

(ii) If ω is very close to one of the natural frequencies, then beats will appear due
to the interaction between the quasi-steady motion and one pair of travelling waves.

(iii) Resonance occurs when ω = bn, and the amplitude of one mode grows linearly
with time.

Table 1 contains results for a system where t
′
A = 10−3 s, so that dimensional

frequencies can be considered. When ω′ ≈ 159 Hz, the response shown in figure 2(a)

for Ṽz0 at z = 0.5 is bounded and the contributions are primarily from the first few
forced modes and the first few axial travelling modes. A beat is observed in figure
2(b) when ω′ ≈ 223 Hz, and A is chosen to be 1. The period of the beat, about 45
time units, arises from the interaction between the driven frequency ω = 1.4 and the
first eigenfunction b0 = π/2. Linear monotonic amplitude growth seen in figure 2(c) is
primarily from the resonant axial mode in (4.10) when ω′ = 250 Hz (ω = b0 = π/2).

The pressure solution P0(z, t) can be obtained from a first integral of the unsteady
part of (4.2) and the isentropic relationship P0 = γρ0.
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4.2. Transition layer solution

The leading-order core acoustic solution in (4.10) does not satisfy the no-slip boundary
condition. Under certain conditions, to be defined quantitatively, the transition to
zero axial velocity at the wall occurs in a relatively thin transition layer which has a
multiple-scale structure that differs fundamentally from a traditional viscous acoustic
boundary layer (Flandro 1974). In particular the overall radial thickness of the layer
is defined by weak viscous considerations. But within it there is a smaller length scale
associated with the distance travelled by an injected fluid particle on the time scale
t′A = L′/C ′0.

The fast injection condition V ′r0 � V ′z0/Re1/2 implies that the transition layer is
inviscid and rotational in the first approximation. Viscous stresses appear in a higher-
order description, but are essential to finding the complete solution, as might be
expected in a multiple-scale analysis.

The multiple-scale structure is defined in terms of stretched variables that measure
distance from the tube wall:

ξ =
1− r
M

, η =
1− r
β

, (4.11)

where β = M2/(δ2/Re) if the core/transition layer concept is valid. In order for
the total layer thickness to be large compared to the smaller-scale feature but small
compared to the tube radius, M � β � 1. The partial derivatives with respect to r
must be replaced by(

∂

∂r

)
= − 1

M

(
∂

∂ξ

)
− 1

β

(
∂

∂η

)
,(

∂2

∂r2

)
=

1

M2

(
∂2

∂ξ2

)
+

2

Mβ

(
∂2

∂η∂ξ

)
+

1

β2

(
∂2

∂η2

)
.

 (4.12)

The variables, represented by the asymptotic expansions

(P , ρ, T ) ∼ 1 +
∑
n=0

Mn+1(Pn, ρn, Tn),

Vz ∼ Vz0 +
M

β
Vz1 + o

(
M

β

)
,

Vr ∼ −Vrw(z) + o(1),

 (4.13)

valid in the limit M → 0, are used with (4.12) in (2.1)–(2.5) to find the first two
approximate equation systems for the transition layer.

The lowest-order version is

∂Vz0

∂t
+ Vrw

∂Vz0

∂ξ
= −1

γ

∂P0

∂z
, (4.14)

P0 = P0(z, t), (4.15)

where Vrw(z) is known from (2.9) and P0(z, t) is the acoustic pressure field obtained
from (4.2) and (4.10). Equation (4.14) describes an inviscid rotational flow which can
satisfy the no-slip boundary condition on the wall. In particular, an evaluation of
(4.14) on the wall ξ = η = 0 shows that the transient vorticity distribution created
there, (

∂Vz0

∂ξ

)
w

= − 1

γVrw(z)

∂P0(z, t)

∂z
, (4.16)
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depends on both the local pressure gradient time variation and the local injection
magnitude. This transition layer vorticity is O(M−1) larger than that associated with
the steady solution in (3.5)–(3.7), given the stretching transformation in the first of
(4.11).

The convective transport equation for the relatively intense transient vorticity,
∂Vz0/∂ξ, can be obtained from a ξ-derivative of (4.14). In this case, the right-hand
side vanishes and one finds that vorticity is convected invariantly by the radial wall
injection velocity Vrw along well-defined characteristic lines, ϕ = t− (ξ/Vrw).

The second-order momentum equation is obtained from terms of O(M/β),

∂Vz1

∂t
+ Vrw

∂Vz1

∂ξ
= −Vrw ∂Vz0

∂η
+
∂2Vz0

∂ξ2
, (4.17)

where a viscous stress term associated with Vz0 is present, and the pressure gradient
is absent since β � 1.

The acoustic solution in the core must match with the transition layer solutions at
the outer edge (ξ →∞, η →∞), based on familiar principles in the theory of matched
asymptotic expansion (see Cole & Kevorkian 1996). The no-slip condition on the
sidewall provides an inner boundary condition for (4.14) and (4.17). The acoustic
core solution in (4.10) shows that all the terms can be classified into the following
two forms: Vz0(z)e

iΩt with Ω = ω or bn, Vz0(z) = sin bnz, and –t cos(bn∗t) sin(bn∗z). It
follows that

ξ = η = 0: Vz0 = 0, (4.18)

ξ, η →∞: Vz0 ∼ Ṽz0(z, t), (4.19)

with the latter from (4.10).
Equations (4.14)–(4.19) are used first to find quasi-steady solutions to each relevant

frequency in the core solution. For any of the non-resonant modes Ω = ω or bn but
ω 6= bn for any integer n, the transition layer solutions can be written as

Vz0 = F(ξ, η, z)eiΩt, Vz1 = G(ξ, η, z)eiΩt. (4.20)

These solution forms can be substituted into (4.14) and (4.17) to determine F and G.
The former found from (4.14), (4.18) and (4.19), is

F(ξ, η, z) = C(η, z) exp

(
− iΩ

Vrw
ξ

)
+ Vz0 (4.21)

where the undetermined coefficient function C(η, z) must satisfy the conditions

η = 0: C = −Vz0(z), (4.22)

η −→ ∞: C = 0. (4.23)

Equation (4.14) can then be rewritten in terms of G and C as

∂G

∂ξ
+

iΩ

Vrw
G = − exp

(
− iΩ

Vrw
ξ

)[
∂C

∂η
+
Ω2

V 3
rw

C

]
(4.24)

where the second term in the square brackets arises from viscous effects.
In order to avoid secular growth of G with respect to the variable ξ, the quantities

in the square bracket must be set to zero. Therefore,

∂C

∂η
+
Ω2

V 3
rw

C = 0, (4.25)
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which together with (4.22)–(4.23) is solved to find

C(η, z) = −Vz0 exp

(
− Ω

2

V 3
rw

η

)
. (4.26)

It follows that the axial velocity variation in the transition layer for each frequency
Ω has the form

Vz0(ξ, η, z, t) = − sin(bnz)

{
exp

[
− Ω2

V 3
rw(z)

η − iΩ

Vrw(z)
ξ

]
− 1

}
eiΩt (4.27)

where −Vrw(z) is the steady sidewall injection velocity. The product of the exponential
terms in (4.27) yields that part of the axial velocity component containing the intense
transient vorticity of the transition layer:

exp

(
− Ω2

V 3
rw(z)

η

)
eiΩϕ (4.28)

where ϕ = t − ξ/Vrw is the characteristic line for vorticity transport. The radial
travelling speed for a constant-ϕ line can be described by

∂r

∂t

∣∣∣∣
ϕ

= −M∂ξ

∂t

∣∣∣∣
ϕ

= −MVrw(z). (4.29)

This shows explicitly that the vorticity is convected in the transition layer by the
steady wall injection speed.

The first factor in (4.28) describes amplitude damping arising from viscous effects
because the η-variable defined in (4.11) is scaled with respect to Re, in part. The second
part describes harmonic spatial oscillations associated with the acoustic solution in
the core.

When resonant driving is present Ω = ω = bn∗ , and the resonant mode representa-
tion of Vz0 is found in a similar way to be

Vz0(ξ, η, z, t) = −t sin(bn∗z) sin(bn∗t)+

{
t [sin(kξ) sin(bn∗t) + bn∗ cos(kξ) cos(bn∗t)]

−
[

η

(1 + bn∗)
cos(kξ) +

bn∗ξ

2k2(1 + bn∗)
sin(kξ)

]
sin(bn∗t)

− 1

ω

[
V 2
rw(z)

2(1 + bn∗)
ξ cos(kξ)−

(
1− b2

n∗

1 + bn∗

)
sin(kξ)

]
cos(bn∗t)

}
× 1

bn∗
sin(bn∗z) exp

(
− b2

n∗

V 3
rw(z)

η

)
(4.30)

where k = bn∗/Vrw(z).
When ξ = η = 0, the solutions satisfy the no-slip boundary condition on the wall.

On the other hand, when ξ and η →∞, the core solution is recovered in an oscillatory
manner since the amplitude of the exponential term goes to zero harmonically. The
effective thickness of the transition layer depends strongly on Ω and Vrw . A large
value of Ω promotes relatively rapid exponential decay, implying that a high-frequency
disturbance is associated with a thinner transition layer. Alternatively, low-frequency
forcing fosters thick transition layers. Thus, higher-order modes tend to be associated
with effectively thinner transition layers. The same type of argument demonstrates
that increasing the value of Vrw(z) enhances the overall transition layer thickness.

Figure 3 gives a graphical representation of the transition layer. This shows that



Acoustically generated vorticity in an internal flow 261

Region with acoustic and steady flow

Region of large transient vorticity

z = 0 z = 1

r = 0, r1= 1

r =1, r1= 0

r1=O
M2 Re

ä20    1

Figure 3. The regions of interest for the problem in § 4. The region between the sidewall r = 1 and
the dashed line at r1 = O(M2Re/δ2) � 1 is characterized by fluid with large (O(1/M)) transient
vorticity. The region between r1 = O(M2Re/δ2) � 1 and the centreline at r = 0 is characterized
by purely acoustic flow. The vorticity generated at the sidewall decays as the edge of the transition
layer is approached. Both regions are also characterized by the steady flow conditions as described
in (3.5)–(3.7).

10
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Figure 4. The axial velocity in the transition layer as a function of ξ for M = 0.01, β = 0.1, when
Ω = 2.5 for the solid curve and Ω = 3 for the dotted curve. The boundary layer is thicker for the
smaller frequency value.

the region of high transient vorticity is adjacent to the sidewall and confined to a
thin region of thickness β = M2Re/δ2. The magnitude of the vorticity decays from
its source at the sidewall as it convects toward the centreline. The area between the
edge of the vortical region is characterized by the acoustic flow described by (4.10)
and the steady flow of (3.5)–(3.7).

A complete solution for the axial velocity in the transition layer consists of an
infinite sum of terms obtained from (4.27) and (4.30), one for each frequency ω and
bn in (4.10). The spatial structure of such a solution will be quite complex, given the
oscillatory dependence on the value of Ω. It is perhaps more illustrative to look at
the results for a single frequency.

The reduced axial velocity inside the vortical layer, Vz0/[−Vz0e
iΩt] is plotted against

ξ in figure 4 with M = 0.01, β = 0.1 and Vrw = 1 for Ω = 2.5 and Ω = 3.0. The
core solution is recovered at about ξ = 10 for Ω = 2.5 which corresponds to r = 0.9.
In contrast, the transition layer thickness is a little smaller for the higher frequency
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Ω = 3.0. Of course the overall transition layer thickness is determined by the lowest
mode in the system.

The viscous factors in (4.27) and (4.30) decay exponentially at the edge of the
transition layer when η → ∞. In dimensional terms, the layer thickness can be
characterized by the decay length l

′
D = (βV 3

rw/Ω
2)R

′
obtained from the dimensional

form of the argument of the exponential in (4.28) or the analogous term in (4.30).
This result, noted initially by Zhao (1994), has been reconfirmed by Majdalani (1998)
in a study of linear, quasi-steady stability employing the unusual asymptotic methods
described by Majdalani & Van Moorhem (1997). In order to assure the existence of
a thin transition layer, l

′
D/R

′
= βV 3

rw/Ω
2 � 1. Given the definition of β below (4.11),

and that the characteristic injection Mach number can be defined by Mb = M/δ,
it follows that β = M3

bδRA, where the acoustic Reynolds number RA ≡ Re/M. This
shows explicitly that an increase in the characteristic wall injection Mach number will
eventually cause the transition layer to be as large as the cylinder radius, l

′
D = O(R

′
)

or β = O(1), so that the core/transition layer concept fails. Then a new multiple-scale
perturbation technique is needed to find solutions where rotational effects co-exist
with an acoustic field throughout the cylinder.

5. Co-existing acoustic/rotational flow
The failure of the core/transition layer asymptotic model, described in § 4, when

β = O(1) implies that one must develop a mathematical model for co-existing
acoustic and rotational disturbances of equal magnitude. Flandro (1995a) describes
a theoretical formulation for such a situation when the amplitude of the transients
is smaller than that of the steady Culick (1966) profiles in (3.5)–(3.7). Perturbation
methods valid for Mb → 0 are used to derive an inviscid linear equation for the
rotational part of the transient axial velocity component. Although the importance
of a shorter radial length scale is recognized, a formal multiple-length-scale analysis
is not employed. Further, an intuitive approach is used to determine which terms in
the full equations are retained in the lowest order asymptotic analysis. The solution
driven by a quasi-steady acoustic field, satisfies the no-slip condition on the sidewall
and symmetry conditions at the cylinder axis. It is characterized by harmonically
varying shear waves on the short length scale that are convected into the cylinder by
the Culick (1966) steady velocity components. The viscous damping of earlier work
of Flandro (1974), like that observed in (4.27) or (4.28), is replaced by a non-viscous
attenuation function associated with the axial dependence of the acoustic velocity
field.

Here, an alternative formulation is developed based on a systematic, fully defined
multiple-scale analysis that includes the effects of weak viscosity. The asymptotic
expansions for the velocity components and thermodynamic variables in the limit
M → 0 are

Vr ∼ Vr0s(z, r) +
∑
n=0

MnṼrn(z, r, t),

Vz ∼ Vz0s(z, r) +
∑
n=0

MnṼzn(z, r, t),

(P , ρ, T ) ∼ 1 +M
∑
n=0

Mn(P̃n, ρ̃n, T̃n),

 (5.1)

where the axial speed transient disturbances are as large as the Culick (1966) profiles.
The terms Vr0s and Vz0s in the first terms of (5.1) are the steady solutions in (3.5) and
(3.6). The tilde on the second terms denotes unsteady variables.
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It is recognized that two disparate length scales are important: the tube radius and
a much shorter length associated with the radial distance travelled by a fluid particle
on the acoustic time scale. A multiple-scale analysis will be carried out in terms of
the variables r1 and r2 defined by

r1 = 1− r, r2 =

∫ r1

0

1

−MVr0s(σ)
dσ. (5.2)

The second transformation, used first in Zhao & Kassoy (1994), includes an integral of
the steady radial velocity field for the case of constant steady wall injection Vrw = 1.
The integral transformation simplifies the equations considerably. It is noted that
when the centreline is approached, r1 → 1, the integral diverges and r2 →∞.

Each of the dependent variables is written in terms of r1 and r2 instead of r alone.
The partial derivatives with respect to r in equations (2.1)–(2.5) must be replaced by

∂

∂r
→ − ∂

∂r1
+

1

MVr0s

∂

∂r2
,

∂2

∂r2
→ ∂2

∂r2
1

− 2

MVr0s

∂2

∂r1∂r2
+

(
1

MVr0s

)2
∂2

∂r2
2

+
1

MV 2
r0s

∂Vr0s

∂r1

∂

∂r2
.

 (5.3)

5.1. Lowest-order mathematical model

The relations in (5.1) can be substituted into (2.1)–(2.5) to find the leading-order
equations in the limit M → 0. First, the spatially homogeneous boundary forcing in

(2.12) and the condition δ � 1 imply that Ṽr0 = 0. Then,

∂ρ̃0

∂t
+
∂ρ̃0

∂r2
= −∂Ṽz0

∂z
− 1

Vr0s

∂Ṽr1

∂r2
, (5.4)

∂P̃0

∂r1
=
∂P̃0

∂r2
= 0, (5.5)

∂Ṽz0

∂t
+
∂Ṽz0

∂r2
= −1

γ

∂P̃0

∂z
, (5.6)

∂T̃0

∂t
+
∂T̃0

∂r2
=
γ − 1

γ

∂P̃0

∂t
, (5.7)

P̃0 = ρ̃0 + T̃0. (5.8)

Following a procedure related to that described by Lagerstrom (1964), and similar

to that employed by Flandro (1995a), the variables, except for P̃0, are divided into
co-existing irrotational planar and rotational non-planar parts of equal magnitude,

Ṽz0 = Vz0(z, t) + V̂z0(z, t, r1, r2),

ρ̃0 = ρ0(z, t) + ρ̂0(z, t, r1, r2),

T̃0 = T 0(z, t) + T̂0(z, t, r1, r2),

 (5.9)

where the overbar denotes irrotational (planar) variables and the hat denotes rota-
tional variables.

The expansions in (5.9) can be used in (5.4)–(5.8) to show that the planar functions
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are described by an irrotational acoustic system

∂ρ0

∂t
= −∂V z0

∂z
, (5.10)

P̃0 = P̃0(z, t), (5.11)

∂V z0

∂t
= −1

γ

∂P̃0

∂z
, (5.12)

∂T 0

∂t
=
γ − 1

γ

∂P̃0

∂t
, (5.13)

P̃0 = ρ0 + T 0, (5.14)

nearly identical to (4.2)–(4.5).
The initial/boundary conditions are

t = 0: Vz0 = 0,
∂V z0

∂t
= 0, (5.15)

z = 0: Vz0 = A sinωt, (5.16)

z = 1:
∂V z0

∂z
= 0, (5.17)

in analogy to (4.7)–(4.9).
The non-resonant acoustic solution for Vz0 is the same as the core solution in

(4.10),

Vz0(t, z) = A sinωt+

∞∑
n=0,n6=n∗

2Aω

b2
n − ω2

(
ω

bn
sinωt− sin bnt

)
sin bnz, (5.18)

where bn = (n + 1
2
)π for ω 6= bn. The pressure P̃0 is found using (5.12) and the

boundary condition in (2.11),

P̃0(t, z) = Aγω(z − 1) cosωt−
∞∑
n=0

2Aω

b2
n

(cosωt− cos bnt) cos bnz, (5.19)

and the thermodynamic variables T 0 and P̃0,

T 0 =
γ − 1

γ
P̃0, (5.20)

ρ0 =
1

γ
P̃0. (5.21)

The first term in the sums of (5.18) and (5.19) arises from forcing at frequency ω, and
the second term describes the eigenfunction response. Only the non-resonant case will
be considered in the present work.

The equations for the rotational components are

∂ρ̂0

∂t
+
∂ρ̂0

∂r2
= −∂V̂z0

∂z
− 1

Vr0s

∂Ṽr1

∂r2
(5.22)

∂V̂z0

∂t
+
∂V̂z0

∂r2
= 0, (5.23)
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∂T̂0

∂t
+
∂T̂0

∂r2
= 0, (5.24)

ρ̂0 + T̂0 = 0. (5.25)

Equations (5.24) and (5.25) can be combined to show that the leading-order rotational
density is described by

∂ρ̂0

∂t
+
∂ρ̂0

∂r2
= 0. (5.26)

Therefore, (5.22) can be rewritten as

∂V̂z0

∂z
+

1

Vr0s

∂Ṽr1

∂r2
= 0, (5.27)

which can be used to find the r2-dependence of Ṽr1 once V̂z0 is known.
The relevant initial and boundary conditions are

t = 0: V̂z0 = 0,
∂V̂z0

∂t
= 0, (5.28)

z = 0: V̂z0 = 0, (5.29)

r1 = 1, r2 →∞:
∂V̂z0

∂r2
= 0,

∂T̂0

∂r2
= 0, (5.30)

r1 = r2 = 0: V̂z0 = −Vz0(t, z), T̂0 = −T 0(t, z). (5.31)

The first of (5.30) can be combined with (5.23) and the initial condition (5.28) to

prove that V̂z0 = 0 on the axis r1 = 0 for all t. Equation (5.31) corresponds to the
no-slip condition and isothermal flow injection. Equations (5.23), (5.24) and (5.26)

show that V̂z0, T̂0 and ρ̂0 are invariant on a characteristic line defined by

η = t− r2, (5.32)

but vary across the η lines. On the sidewall (r2 = 0), the η = 0 line appears at t = 0+

and subsequently, at t = c > 0, η = c appears. At a particular time τ, constant-η lines,
which range in value from 0 to τ, are transported toward the axis by convection at
the local radial steady velocity, as found from a time derivative of (5.32) after using
(5.2).

The inviscid equation in (5.23) can be combined with the first of (5.31) and (5.12)
to show that vorticity is produced on the sidewall by the transient axial gradient of
the acoustic pressure field,

∂V̂z0(t, z, 0, 0)

∂r2
= −∂V̂z0

∂t
=
∂V z0

∂t
= −1

γ

∂P̃0

∂z
, (5.33)

where Vz0 and P̃0 are given in (5.18) and (5.19). Equation (5.33) is analogous to
(4.16) in the core/transition layer description. It is noted that the largest unsteady
non-dimensional vorticity term is given by

Ω̃θ =

(
1

MVr0s

)
∂V̂z0

∂r2
. (5.34)

The parameter, 1/M, arises from large gradients occurring in the spatially oscillatory
velocity profile on the short length scale r2. Equation (5.23) also shows that the
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vorticity generated at the wall is convected into the cylinder by the steady radial
velocity field Vr0s(r).

It should be noted that the inviscid equation for V̂z0 in (5.23) differs from the
analogous equation of Flandro (1995a) which includes an axial convection term

proportional to ∂V̂z0/∂z, retained on the basis of an intuitive rather than a formal
asymptotic argument.

In general, solutions to the inviscid first-order hyperbolic equations in (5.23) and
(5.24) can be written formally as

V̂z0 = V̂z0(η, r1, z), T̂0 = T̂0(η, r1, z) = −ρ̂0, η = t− r2. (5.35)

If the no-slip and isothermal boundary conditions (see (2.9) and (5.31)) are satisfied,
then one finds results on r1 = 0:

V̂z0(η, 0, z) = −Vz0(η, z), T̂0(η, 0, z) = − (γ − 1)

γ
P̃0(η, z), (5.36)

where the quantities on the right-hand side of the equality signs are given in (5.18)
and (5.19). The results in (5.36) are essentially boundary conditions for higher-order
equations, which are used to find explicit functional dependence of the variables.

Once V̂z0 is found, then the mass conservation equation (5.27) can be integrated with

respect to r2 to find the r2-dependence of the radial velocity V̂r1.
The r1-dependence of the rotational temperature field is described in (5.24), and

is analogous to the axial rotational velocity in (5.23). The solution to (5.24) can be
found along the characteristics in (5.32), the same as those found for the rotational
axial velocity. Similarly to that of the vorticity along the sidewall in (5.33), the heat
flux can also be found along the sidewall. Details on this procedure can be found in
Staab et al. (1999).

5.2. Higher-order considerations

The expansions in (5.1) can be combined with (2.1)–(2.5) to find the O(M) equation
set in the limit M → 0. The procedure used to find the leading-order solution is

employed so that the variables, except for P̃1, are divided into irrotational planar and
rotational non-planar parts,

Ṽz1 = Vz1(z, t) + V̂z1(z, t, r1, r2),

ρ̃1 = ρ1(z, t) + ρ̂1(z, t, r1, r2),

T̃1 = T 1(z, t) + T̂1(z, t, r1, r2).

 (5.37)

The planar, acoustic equations,

∂ρ1

∂t
= − ∂

∂z

(
Vz1 + ρ0Vz0

)
, (5.38)

∂V z1

∂t
=

∂

∂z

(
−1

γ

(
P̃1 − P0s

)
+
ρ2

0

2
− V

2

z0

2

)
, (5.39)

∂T 1

∂t
=

∂

∂t

(
(γ − 1)ρ1 +

(γ − 2)(γ − 1)

2
ρ2

0

)
, (5.40)

P̃1 = ρ1 + T 1 + ρ0T 0, (5.41)
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containing quadratic driving terms associated with lower-order acoustics are not con-
sidered further here, although they may be important for studying acoustic streaming
effects.

The largest possible viscous effect occurs when β = ReM2/δ2 = O(1) (see (4.11)),

in which case the higher-order axial momentum equation for V̂z1 has the non-
homogeneous form

∂V̂z1

∂t
+
∂V̂z1

∂r2
=

1

V 2
r0s

∂2V̂z0

∂r2
2

+
1

γ
ρ̂0

∂P̃0

∂z
+
Ṽr1

Vr0s

∂V̂z0

∂r2
+ Vr0s

∂V̂z0

∂r1

−V̂z0
(
∂Vz0s

∂z
+
∂V z0

∂z
+
∂V̂z0

∂z

)
− (Vz0s + Vz0s

) ∂V̂z0
∂z

. (5.42)

Equation (5.42), the higher-order analogue to (5.23), provides additional information
about the behaviour of the leading-order axial speed solution.

If the transformation of the coordinate system from (t, r1, r2, z) to (η, r1, r2, z) is
made, then the derivatives with respect to t and r2 must be replaced by(

∂

∂t

)
=

(
∂

∂η

)
r2

,

(
∂

∂r2

)
=

(
∂

∂r2

)
η

−
(
∂

∂η

)
r2

. (5.43)

It follows that (5.42) can be written as

∂V̂z1

∂r2

∣∣∣∣∣
η

=
1

V 2
r0s

∂2V̂z0

∂η2
+ Vr0s

∂V̂z0

∂r1
+

1

γ
ρ̂0

∂P̃0

∂z

− 1

Vr0s

(
∂(Vr1V̂z0)

∂r2
− ∂(Vr1V̂z0)

∂η

)

−V̂z0
(
∂Vz0s

∂z
+
∂V z0

∂z
+
∂V̂z0

∂z

)
− (Vz0s + Vz0s

) ∂V̂z0
∂z

. (5.44)

An integration of (5.44) with respect to r2, holding η, r1 and z fixed will generate
secular growth in r2 unless certain terms are suppressed. Details of a similar analysis
are given in Staab (1998). In considering the impact of each term, it is important
to remember that the harmonic t-dependence of the planar acoustic solutions in
(5.18)–(5.21) must be rewritten in terms of η and r2 by using (5.32). When written in
the coordinate system (z, t, r1, r2) the suppressed terms take the form

1

V 2
r0s

∂2V̂z0

∂r2
2

+ Vr0s
∂V̂z0

∂r1
− ∂

∂z

(
1
2
V̂ 2
z0 + V̂z0Vz0s

)
= 0, (5.45)

which is a nonlinear diffusion equation for the rotational axial velocity V̂z0 with a
time-like variable r1. Equation (5.45) is a balance of viscous diffusion on the r2-
scale, transport of axial momentum by the steady radial speed and nonlinear axial

convection. The solution for V̂z0 must satisfy an ‘initial’ condition at r1 = 0 from
(5.31),

V̂z0

∣∣∣∣
r1=0

=

−Vz0(η, z) =−A sinωη− ∞∑
n=0

2Aω

b2
n − ω2

(
ω

bn
sinωη − sin bnη

)
sin bnz, η > 0

0, η < 0,

(5.46)
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and a boundary condition at the centreline from (5.30)

r2 −→ ∞, ∂V̂z0

∂r2
= 0. (5.47)

In addition, a condition must be specified on r1 > 0, r2 = 0 which is compatible with
(5.46) at the point r1 = r2 = 0. This is necessary because r1 and r2 are treated as
independent variables. The reasonable choice is given by

V̂z0(t, z, r1, r2 = 0) = −Vz0(t, z). (5.48)

Lastly, the condition at z = 0 in (5.29) is used.

The nonlinear term in (5.45), 1
2
∂(V̂z0)

2/∂z is present in this study because the
O(M) boundary disturbance is larger than that used in earlier, basically linear studies
(Flandro 1974, 1995a). Its presence suggests that wave steepening and other forms of
instability may occur in the evolving flow field. If the imposed endwall disturbance is
smaller, and/or axial variations are ignored, then a linear, viscous diffusion equation
is derived.

The linear convection term in the diffusion equation (5.45) includes the axial

convection effect, Vz0s(V̂z0)z , retained somewhat arbitrarily by Flandro (1995a) in his
analogue to (5.23). In the present multiple-scale formulation, the asymptotic analysis
itself leads to the conclusion that the effect properly belongs in the higher-order
diffusion equation, rather than in the lower-order inviscid axial momentum equation
in (5.23).

6. Finite difference solutions for the nonlinear equation
A multiple-scale analysis is used in § 5 to develop a set of equations for the

rotational axial velocity, V̂z0. The lowest-order analysis leads to the first-order wave

equation (5.23), which describes only the behaviour of V̂z0 on the short radial scale, r2.
A higher-order analysis is necessary to resolve phenomena on the longer radial scale,
r1. This result is found in (5.45). When the full solution in (r1, r2)-space is evaluated
along the intersection with the r1–r2 curve represented by the transformation in (5.2),
one finds the desired physical solution in (r, z, t)-space, as shown schematically in
figure 5.

For all the results that appear in the present work, the steady sidewall radial
velocity, Vrw = −1, will be used for simplicity. The resulting integral transformation
in (5.2) becomes

r2 = − 1

M
log
(
tan
(
π(1− r1)2/4

))
. (6.1)

This relationship between r1 and r2 defines the curve along which the physical solution
will be found. It is noted that r2 → ∞ as r1 → 1. This is in contrast to the linear
transformation found in Staab et al. (1999) in which r1 = Mr2 is used. The solution
in Staab et al. (1999) is restricted to r2 < Mr1 to ensure that the centreline is not
crossed when the solution to (5.45) is found. In contrast, where the transformation in
(5.2) is used there is no restriction on the domain of the solution in the present work.

The solution to (5.45)–(5.48) is found in three separate steps, denoted in figure 5,
by the circled numbers:

1. Equation (5.23) is solved analytically along r1 = 0, using the method of charac-

teristics as described above, to find V̂z0(0, r2, z, t). The solution is given in (5.46).

2. The solution V̂z0(0, r2, z, t) is taken as the initial condition (or boundary at r1 = 0)



Acoustically generated vorticity in an internal flow 269

V̂z0

V̂z0(r1,r2,z,t)

V̂z0(r1= 0,r2,z,t)

r2

r1

Figure 5. A graphical description of the solution development procedure. The circled numbers refer
to the list in § 6. In the first step, the wave equation in (5.23) is solved along r1 = 0. This is taken
to be the boundary condition for (5.45) and the equation is solved in the domain 06 r26 r?2 and
06 r16 r?1 , where r?1 and r?2 are explained in the text. Finally the full solution is evaluated along
r2 = − log(tan

(
π
(
1− r1)2/4

))
/M to find the desired solution. The solid line in the (r1, r2)-plane is

this curve.

for (5.45), which is solved subject to (5.29) and (5.47) to find the generalized solution

V̂z0(r1, r2, z, t).
Although the r2-domain of (5.23) and (5.45) is semi-infinite, the computational

domain must be finite and the upper boundary, r?2 , is chosen to be sufficiently far
beyond the wave front such that the condition in (5.47) is satisfied. The solution is
also solved for 06 r16 r?1 where r?1 = tan−1

(
e−Mr?2

)
, the solution of (6.1) for r1 = r?1

when r2 = r?2 .

3. The solution V̂z0(r1, r2, z, t) at each z and t is evaluated along r2 = − log(
tan
(
π(1− r1)2/4

))
/M to yield the desired physical solution in (r, z, t)-space.

It is noted that t is an implicit variable in (5.45) with the dependence driven by the

‘initial’ condition V̂z0(r1 = 0, r2, z, t) in (5.46). For a given value of t, the solution to
the wave equation, (5.23), on r1 = 0, penetrates a distance defined by the front, η = 0

in (5.32), and (5.45) describes the convection and diffusion effects of V̂z0.
Equation (5.45) is solved via the method of lines, a numerical technique which

employs a spatial discretization to reduce a PDE to a set of ordinary differential
equations. The resulting set of ordinary differential equations is then solved using a
standard ODE solver. A fourth-order approximation is used to discretize the r2- and
z-spatial derivatives in (5.45).

This discretization leads to a set of Nr2Nz coupled nonlinear ordinary differential
equations, where Nz and Nr2 are the number of grid points chosen in the z- and r2-
directions respectively. The ODE set is solved using an adaptive fourth-order Runge–
Kutta solver, which is a stable method for solving a set of ordinary differential
equations that arise from the discretization of equations with both parabolic and
hyperbolic terms.

At each value of the ‘parameter’ t, the integration is initiated with the initial con-
ditions in (5.46), subject to the boundary conditions in (5.47). The spatial distribution
of the solution with respect to r2 evolves as the ‘time-like’ variable r1 increases.

Integration is carried out for 06 r16 r?1 . The physical solution V̂z0(z, t, r) is found

from the intersection of the surface defined by V̂z0(z, t, r1, r2) and the curve relating r1
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Figure 6. The axial velocity, V̂z0 at t = 10 when ω = 1 for the parameters M = 0.01,
Re = 3× 105, and δ = 20.

and r2 in (6.1). In general this curve does not coincide with the computational grid
points. Hence cubic spline interpolations in r2 are employed at every chosen r1 value
to obtain the physical solution.

The accuracy of the results has been tested for A = 0.1, M = 0.01, t = 20,
Re = 3× 105, δ = 20. The number of grid points used is Nz = 25 and Nz = 50, and
also Nr = 50 and Nr = 100. The test cases reveal that the difference between Nr = 50
and Nr = 100 is bounded by 10−3. Results show that the difference between Nz = 25
and Nz = 50 is bounded by 4 × 10−3 away from z = 0, and 10−2 near z = 0. These
bounds are sufficient for the Mach numbers considered here.

The larger errors near z = 0 are due to a boundary condition incompatibility at
z = 0 and r = 1. On z = 0, 06 r < 1, the axial speed is prescribed by (2.12). In
contrast, on r = 1, z > 0, the axial speed satisfies the no-slip condition. As a result,
the corner point z = 0, r = 1 is the source of a singular solution to the partial
differential equation that describes the flow. The local error is confined to a few grid
points near z = 0, and has limited influence on the solution elsewhere.

7. Results
The results presented here have been found using the numerical method presented

in the previous section. The number of radial and axial grid points for the method
of lines shown above is Nz = 25 and Nr2 varies between 75 and 150 grids depending
on the particular parameters. The former is sufficient to describe the relatively benign
axial spatial gradients in the flow. All the results presented here use A = 0.1, δ = 20
and Re = 3 × 105 unless noted. Also the initial condition is obtained from (5.46) by
using the first 40 Fourier modes.

7.1. Properties of the axial rotational velocity

The surface plots in figures 6–11 describe the radial and axial variation of the axial

rotational velocity, V̂z0 for various times and Mach numbers. These figures show the

following general properties for V̂z0:



Acoustically generated vorticity in an internal flow 271

the inviscid front propagates from the sidewall at t = 0 toward the centreline as
time evolves;

the speed of propagation is directly dependent on the Mach number;

the amplitude of the V̂z0 spatial waves decays as they propagate toward the
centreline;

the flow structure and the amount of decay of V̂z0 depend on ω, the driving
frequency;

the decay rate depends on both the Reynolds number and the axial convection.

Figure 6 is a surface plot of the axial rotational velocity V̂z0 at t = 10 using
M = 0.01, ω = 1, A = 0.1, Re = 3 × 105, and δ = 20. The sidewall is located at
r = 1 on the left of the plot, and the right endpoint is r = 0.65 (the centreline is not
pictured). The endwall at z = 0 is in the background and the exit plane at z = 1
is located in the foreground of the plot. The boundary condition at the sidewall is
the negative of the acoustic velocity in (5.18) to ensure that the total axial velocity
satisfies the no-slip boundary condition.

At t = 10 two complete spatial waves are present and located between the sidewall
and a viscous front located near r = 0.89. The viscous front is defined as the 0.001

contour of the amplitude of V̂z0. The plot also shows the undiffused vorticity front
near r = 0.90, a heavy black line. This front is defined by η = 0, or r2e = t, where
the subscript e denotes the edge. The solution of (6.1) for re = 1 − r1 when r2 = Mt
shows that the edge is located at the radial position

re(t) =
2√
π

(
tan−1(e−Mπt)

)1/2
(7.1)

measured from the centreline. The inviscid front in figure 6 is invariant to axial
location for spatially uniform sidewall injection. Its location compares very favourably
with the diffused front location obtained from the complete numerical solution to
(5.45), thus helping to verify the accuracy of the latter.

The theory in § 5.1 shows that vorticity is generated at the injection surface by the
interaction of the acoustic pressure gradient with the injected fluid. To leading order,
the vorticity is simply the radial gradient of the leading-order rotational axial velocity
term as in (5.34). Hence the radial gradients of the waves present in figure 6 describe
the vorticity waves.

The spatial waves in figure 6 have a wavelength of about 0.05 radial units. This is
consistent with the second scale in the expansion in (5.2). The shorter scale captures
phenomena on the order of the Mach number, M = 0.01 in this case. The precise
spatial pattern is due to the pattern of oscillation in the acoustic pressure gradient as
described above. The theory also shows that the vorticity generated at the sidewall is
convected into the flow by the steady radial velocity. The results in figures 7 and 8
will show that the waves are convected toward the centreline.

Figure 7 shows the rotational axial velocity at t = 20. The two maximal peaks near
r = 1 and r = 0.95 in figure 6 have moved to near r = 0.9 and r = 0.85. The inviscid
front at re = 0.79 is located about twice as far from the sidewall as in the previous
plot. The location of both the peaks and the inviscid front is consistent with the
distance travelled by a fluid particle during a time interval of 10 units. This distance,
denoted by ∆r, is approximated near the sidewall by

∆r =
∆r′

R′
=

∆t′V ′r0
R′

=
t′aV ′r0
R′

∆t =
L′V ′r0
C ′0R′

∆t = M∆t,
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Figure 7. The axial velocity, V̂z0 at t = 20 when ω = 1 for the parameters M = 0.01, Re = 3× 105,
and δ = 20.
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Figure 8. The axial velocity, V̂z0 at t = 30 when ω = 1 for the parameters M = 0.01, Re = 3× 105,
and δ = 20.

where the definitions in (2.6) are used and ∆r′ and ∆t′ are dimensional distance and
time intervals respectively. The distance travelled by a fluid particle between t = 10
and t = 20 with a Mach number of M = 0.01 is 0.1 radial units.

Figure 7 also shows the effects of viscous diffusion and axial convection on V̂z0.
The amplitude of the two peaks in figure 6 have decreased substantially during the
time interval from t = 10 to t = 20. The viscous front at t = 20 has diffused further
past the inviscid front location than for t = 10 in figure 6. The difference can be
explained in terms of the accumulated effect of viscous diffusion and axial convection
as explained later.



Acoustically generated vorticity in an internal flow 273

0.1

0

–0.1

–0.2

0

0.5

1.0
1.0 0.9 0.8 0.7

r

z

R
ot

at
io

na
l a

xi
al

 v
el

oc
it

y

0.6 0.5 0.4 0.3

Figure 9. The axial velocity, V̂z0 at t = 60 when ω = 1 for the parameters M = 0.01, Re = 3× 105,
and δ = 20.

More spatial waves are seen in figure 8 at t = 30. The undiffused velocity front,
shown by the heavy black line, has moved to r = 0.68. Here again, one sees a decrease

in the amplitude of V̂z0 in the radial direction.

Figure 9 shows V̂z0 at t = 60. The inviscid front is now located at re = 0.44. The
surface plot shows that the amplitude of the axial rotational velocity is less than 10−3

for radial locations less than 0.7.
The wave near r = 0.45 is larger in amplitude that the waves nearest it. Although

this is not well understood, it is not a numerical artifact and has been seen in the
model problem in the Appendix. In this model problem, the first wave decays at a
slower rate than the waves behind it.

Figure 10 shows V̂z0, at t = 50 for ω = 1.4 and Re = 3 × 106. A near-resonant
frequency is chosen to show the possibility of beats in the flow structure. The acoustic
field for ω = 1.4 is seen in figure 2(b). The Reynolds number is 10 times higher than
in the previous figures to minimize viscous diffusion and show more structure.

Staab et al. (1999) have performed analysis on (5.45) with the convection terms
dropped. They show that this model can be solved analytically and that

V̂z0 ∼
(

tan
πr2

4

)Bω2/Re

, B =
2δ2

π(1 + A)2M2
. (7.2)

One can use this model solution to learn how the parameter values affect solution

decay near the centreline r = 0. As the centreline is approached, the decay of V̂z0
depends on the ratio ω2/Re. For a given Re, the axial velocity will decay almost twice
as fast for ω = 1.4 compared to the ω = 1 case. The decay rate can be reduced by an
appropriate increase in the Reynolds number.

Figure 11 shows a surface plot of V̂z0 at t = 20 when ω = 1 for a larger Mach
number, M = 0.02, than in the previous figures. In comparison to the result in figure
7, for M = 0.01 and t = 20, the waves have travelled about twice as far into the
flow field for the same time period due to enhanced radial convection. This can be
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Figure 10. The axial velocity, V̂z0 at t = 50 when ω = 1.4 for the parameters M = 0.01,
Re = 3× 106, and δ = 20.
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Figure 11. The axial velocity, V̂z0 at t = 20 when ω = 1 for the parameters M = 0.02,
Re = 3× 105, and δ = 20.

explained by the relationship,

M =
V ′r0L′

C ′0R′

which shows that an increase in V ′r0 increases the Mach number.
Examination of the axial rotational velocity along the sidewall in figures 6–11 shows

that vorticity, evident from the large radial gradient on the sidewall, is produced at
r = 1. The surface plot of the unsteady vorticity distribution in figure 12 shows the
axial and radial distribution, where the unsteady vorticity is defined in (5.34).

The amplitude of the vorticity on the sidewall is about 30, which is consistent with
the O(1/M) magnitude in the result in (5.34). The result also shows that vorticity is
in the region 0.686 r6 1. Similar results taken at larger times reveal that vorticity



Acoustically generated vorticity in an internal flow 275

0

0.4

1.0
1.0

0.9
0.8

0.7

r

z

Xh

0.6

0.2

0.8
0.6

20

40

0

–20

–40

Figure 12. The unsteady vorticity, at t = 30 when ω = 1 for the parameters M = 0.01,
Re = 3× 105, and δ = 20.
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Figure 13. Comparison of the rotational axial velocity, V̂z0, at A = 0.1, M = 0.02, Re = 3× 105 and
z = 0.5. The solid line is the solution to (5.45), and the dashed line is the solution to (5.45) with the

nonlinear term, ∂V̂ 2
z0/∂z reduced by a factor of 10−5.

exists between the sidewall and the inviscid front defined earlier. The amplitude of the
vorticity waves is also affected by the boundary driving frequency and the Reynolds
number in the same manner as the axial rotational velocity.

Figure 13 shows the effect of axial convection on V̂z0. The solid curve shows the
complete solution to (5.45) while the dashed-dot curve shows the solution to (5.45)
when the axial convection terms are reduced by 10−5. The result, given at z = 0.5, for
t = 20, Re = 3 × 105, δ = 20, and M = 0.02, shows that axial convection plays an

important role in decreasing the magnitude of V̂z0 and hence the unsteady vorticity.
The conclusion about the effect of axial convection obtained by the numerical result

is supported by the results of a model problem of Staab et al. (1999). They examine
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Figure 14. A plot of three rotational axial profiles at the Reynolds numbers, Re = 106 (solid line),
Re = 3 × 105 (dotted line), and Re = 105 (dash-dot line). The result shows as expected that the
higher the Reynolds number, that less diffusion occurs. The remaining parameters are δ = 20,
M = 0.01, z = 0.5.

(5.45) with the diffusion term dropped and show analytically that the presence of
axial convection decreases the magnitude of the solution to the model problem.

The effect of the Reynolds number on V̂z0 is considered in figure 14. The solid
curve is for Re = 106, the dotted curve for Re = 3× 105, and the dash-dot curve for
Re = 105. The plot is taken at z = 0.5 for t = 20, M = 0.02, δ = 20, A = 0.1 and
ω = 1. The results show that the amplitude of each of the peaks is reduced by a
decrease in Reynolds number associated with a larger viscous effect. This is consistent
with the results of the model problem in (7.2), which shows an increase in the decay

rate of V̂z0 with a decrease in Reynolds number.
The two sets of peaks for the solid curve between r = 0.78 and r = 0.8 are due

to the shape of the acoustic field. This same pattern can be seen in figure 2 near
t = 12 for ω = 1. The large Reynolds number for the solid curve results in very little
diffusion. For the smaller Reynolds number cases (the dashed-dot and dotted curves),
diffusive effects have smoothed the two peaks into one peak.

7.2. The complete velocity field

The previous section discussed the dynamics of the rotational axial velocity, V̂z0, and
its dependence on the flow parameters. The results presented in figures 15 and 16
show the complete leading-order velocity flow field.

Figure 15 shows a series of plots of axial profiles at t = 5, 10, 15, and 20, at the axial
locations, z = 0.24, 0.48, and 0.72. The remaining parameters are M = 0.01, A = 0.2,
Re = 3× 105, δ = 20, and ω = 1.

All the plots show that vorticity is generated along the sidewall. This is evident
from the large radial gradient of the axial velocity at r = 1. The four plots show that
roughly 1, 2, 3, and 4 waves have been generated and convected into the flow field
for increasing time. The plots also show that the axial velocity magnitude increases
in the downstream direction. This is mainly due to the steady axial velocity in (3.6).

The results for t = 5 and t = 10 show that there is a region of negative axial
velocity near the sidewall, while at t = 15 and t = 20, the flow near the sidewall is
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Figure 15. A plot of a series of axial profiles at t = 5, 10, 15, and 20, at the axial locations z = 0.24,
0.48, and 0.72. The plots show that the vorticity generated along the sidewall propagates into the
flow field and diffuses. The length scale of vorticity is on the order of the Mach number, 0.01 in this
case. The velocity at the centreline is a combination of the acoustic and steady fields. The difference
in centreline velocities over time is due to the acoustics, and the difference in velocities at axial
location is mainly due to the steady field.

positive. This is due to the fact that the acoustic axial velocity is negative for the
first two times and positive for the second two times. This can be seen in figure 2
when ω = 1. The flow field away from the sidewall is dominated by the steady axial
velocity which is always positive. Also, the magnitude of the rotational velocity is
small away from the sidewall due to the axial convection and radial diffusive effects
discussed previously.

One may observe that the vorticity generated along the sidewall propagates into
the flow field and diffuses. The length scale of vorticity seen in this result is consistent
with the analysis, which shows that small-scale phenomena are on the order of the
Mach number, 0.01 in this case. The velocity at the centreline is a combination of
the acoustic and steady field. The difference in centreline velocities over time is due
to the acoustics, and the variation in velocity with axial location is due mainly to the
axial variation of the steady field.

Five direction field plots appear in figure 16 near the sidewall. The domain for each
plot is 0.856 r6 1 and 06 z6 1, with the remaining parameters ω = 1, Re = 3× 106,
M = 0.01, A = 0.4, and δ = 20. The direction field is the total radial and axial
velocities, with the radial velocity multiplied by 0.2 to emphasize the axial velocities.
All of the vectors have been normalized to emphasize direction of flow and not speed.
The plots show that there is mainly positive axial flow at t = 0, 2, and 8, while for
the remaining times, negative axial velocity is present. This is similar to the result in
figure 15.

The result for t = 0 consists only of the steady velocity field. At t > 0, the velocity
at the endwall is turned on and the blowing of mass is evident at z = 0 for all of
the plots. Evidence of organized vorticity can be seen at t = 4 on the right-hand side
of the plot with an instantaneous counterclockwise motion of the fluid. Smaller-scale
vorticity (hence larger in magnitude) is seen in the t = 6 and t = 10 plots.
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Figure 16. A vector field plot of the velocity near the sidewall, r = 1. The plot shows that a region
of backwards flow (toward the endwall) exists for a thin layer near the wall. The acoustic field
drives the fluid exiting the sidewall toward the endwall.

8. Energetics of the internal flow

The prescribed axial speed disturbance imposed on the endwall in (2.12) causes
transient work to be done on the flow system. Acoustic disturbances originating at
the end distribute the energy into the flow field. Simultaneously, energy is transferred
from the acoustic field into the rotational flow field as vorticity is generated at the
sidewall and redistributed in the internal flow. This partition of transient energy
between the acoustic and rotational flows is of interest in understanding the flow
dynamics. It has been considered in terms of the concept of ‘flow turning’ used in the
solid rocket motor stability literature (Flandro 1995b, for example).

The endwall work input rate can be written in non-dimensional form as

We(t) = MA

∫ t

0

P (0, t) sinωtdt (8.1)

where P (0, t) is obtained from (5.1) and (5.19) to O(M). It follows that

We(t)

MA
=

1

ω
(1− cos(ωt)) + AωM

∞∑
n=1

1

(λ2
n − ω2)

×
{

1− cos(2ωt)

2ω
−
[

(1− cos(ω + λn)t)

ω + λn
+

(1− cos(ω − λn)t)
ω − λn

]}
, (8.2)
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describes the time-history of the work input to O(M). The long-time average,

W̄e = lim
T→∞

1

T

∫ T

0

Wedt = MA

[
1

ω
+MA

∞∑
n=1

(3ω2 + λ2
n)

(λ2
n − ω2)2

]
, (8.3)

is positive definite and the series converges rapidly. This added energy must now be
partitioned into the acoustic and rotational fields.

One may write the non-dimensional total energy per unit mass of a fluid particle
in the form

E = E
′
/(

C
′2
0

γ(γ − 1)

)
=

{
1 +

γ(γ − 1)

2
M2

(
V 2
z0s +

1

δ2
V 2
r0s

)}
+MT̃0

+M2

{
T̃1 +

γ(γ − 1)

2

(
2Vz0s(Vz0 + V̂z0) + (Vz0 + V̂z0)

2 + O

(
M,

1

δ2

)]}
. (8.4)

The first two terms in curly brackets represent steady flow energy, while the third

includes both acoustic and rotational components defined in (5.9). The O(M)T̃0 term
arises directly from the endwall disturbance and is larger than the biggest kinetic
energy term of O(M2) in this low Mach number flow. Energy in this thermal term

and the analogous T̃1-term cannot be evaluated until solutions are developed in
a future paper. However, it is clear from the present formulation that a thermal
accommodation layer will be present in order to satisfy an imposed wall temperature
boundary condition (i.e. (2.9)), like those studied by Roh & Yang (1995).

The largest component of the unsteady kinetic energy, Λ, can be written in the
non-dimensional form:

Λ

γ(γ − 1)M2
= Vz0s(Vz0 + V̂z0) + 1

2
(Vz0 + V̂z0)

2, (8.5)

which includes both acoustic and rotational flow contributions. Equations (5.12) and
(5.23) can then be employed to derive an expression for the rate of change of Λ for
fluid particles entering the cylinder from the sidewall:

∂Λ

∂t
+
∂Λ

∂r2
= −M2(γ − 1)(Vz0s + Vz0 + V̂z0)

∂P0

∂z
. (8.6)

Then a variable transformation employing η = t−r2 can be used to write a Lagrangian
equation for Λ(t, η, r1, z):

∂Λ

∂t

∣∣∣∣
η

= −M2(γ − 1)(Vz0s + Vz0 + V̂z0)
∂P0

∂z
. (8.7)

It follows that on a constant-η line the kinetic energy is altered by an interaction
between the complete O(1) axial velocity and the axial gradient of the acoustic

pressure. One should note that the rotational field itself (V̂z0) affects the change in Λ.
One can integrate (8.7) by following a convecting fluid particle on a given η line

from the time it exits the sidewall (t = η) to any larger value of time. It follows that

Λ = Λ0 + γ(γ − 1)M2(Vz0(t, z)− Vz0(η, z))

[
Vz0s +

Vz0(t, z) + Vz0(η, z)

2
+ V̂z0

]
(8.8)

where Λ0 ≡ Λ(η, η, r1, z) is obtained from (8.5). Equation (8.8) describes the evolution
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of the fluid particle kinetic energy on a given η line. It is perhaps more illustrative to
find the time-average of (8.8), in order to integrate away harmonic function variations.
The result is that

lim
T→∞

1

T

∫ T

0

Λdt = γ(γ − 1)M2

{
lim
T→∞

1

T

∫ T

η

V
2

z0

2
dt+ Vz0sV̂z0 +

V̂ 2
z0

2

}
(8.9)

where the value of Λ0 has been used.
The first term on the right-hand side of (8.9) describes the average acoustic kinetic

energy and is positive definite. One can observe a form of long-time kinetic energy
partitioning between the acoustic and rotational fields.

It is interesting to note that the long-time average of (8.7) on a constant-η line
vanishes:

lim
T→∞

1

T

∫ T

η

∂Λ

∂t

∣∣∣∣
η

dt = 0. (8.10)

This result and (8.7) imply that the kinetic energy increases in some intervals and
decreases in others, with the average value on a constant-η line given by (8.9).

These issues are worthy of additional consideration in the future because the flow
is fundamentally rotational in character. As a result, traditional acoustic intensity
arguments cannot be employed to elucidate the fundamental energy partitioning
processes.

9. Conclusions
Systematic asymptotic methods have been employed to formulate an initial-

boundary-value model for co-existing acoustic and rotational flow fields in a long
narrow cylinder. Boundary-driven axial planar acoustic waves interact with an invis-
cid weakly rotational injection-induced steady flow to produce intense time-dependent
vorticity at the sidewall of the cylinder. For appropriate ranges of Reynolds number,
Mach number, and frequency, the intense vorticity penetrates far into the chamber
due to convection by the steady radial velocity field. The amplitude and distribution
of the vorticity is impacted by weak viscous and nonlinear effects.

Results for non-resonant frequency values show that the spatial wave amplitudes in
the rotational axial velocity decline monotonically as the centreline is approached. In
contrast, near-resonant frequencies produce non-monotonic ‘bursts’ of spatial waves
as a response to beats in the time variation of the axial gradient of the acoustic
pressure.

Numerical experiments based on the equations derived have been used to demon-
strate that nonlinear axial convection is a source of spatial wave amplitude decline in
addition to the more familiar effect of viscous diffusion.

The details of the spatial wave structure are quantitatively sensitive to the axial
flow Reynolds number. An increase in Re from 105 to 106 causes new details to
appear.

The complete axial velocity variations show narrow localized regions of reverse
flow. One can observe long thin vortices stretched out along the axial direction for
this case of uniform wall injection.

It is also demonstrated that there are parameter ranges of Mach number (as it
relates to injection rate), driving frequency and Reynolds number for which vorticity
is really confined to weakly viscous acoustic boundary layers, thin compared to



Acoustically generated vorticity in an internal flow 281

the radius of the cylinder, but larger than those discussed by Flandro (1974), and
Baum & Levine (1987). These structures can appear for relatively small injection
rates, relatively high driving frequency and low Reynolds numbers, so that viscous
damping of the vorticity amplitude is profound. Then, the cylinder core will contain
the relatively weak vorticity of the steady Culick (1966) solution and irrotational
acoustic waves driven by the boundary forcing.

There is now a considerable body of evidence in support of the presence of
an unsteady vorticity distribution within an appropriately high Reynolds number
wall-injected flow in a cylinder. The experiments of Brown et al. (1986a, b), the small-
disturbance linear stability modelling of Flandro (1995a, b) as well as Majdalani &
Van Moorhem (1997, 1998), the computational solutions of Vuillot & Avalon (1991),
Smith et al. (1993), and that of Kirkkopru et al. (1995, 1996, 1999) as well as the
current work show unequivocally that unsteady vorticity is generated at the cylindrical
surface and is convected away by the injected fluid. The core of the cylinder is free of
intense unsteady vorticity only during the very early phases of the transient process,
prior to the arrival of a well-defined unsteady vorticity front.

Unlike the recent work of Flandro (1995a, b) and that of Majdalani & Van
Moorhem (1997, 1998), which employs quasi-steady linear small-disturbance stability
theory for explaining the observed presence of rotational flow throughout the cylin-
der, we have formulated an initial-boundary-value theory for a weakly nonlinear and
viscous flow process. A multiple-length-scale analysis, which is essential in forming a
rational mathematical model, is used to demonstrate to first order that the vorticity is
generated at the surface by a fundamentally inviscid interaction between the acoustic
pressure axial gradient and the injected fluid at the wall, and is convected away by
a steady radial velocity field. Then, a higher-order theory is used to prove that the
basic vorticity is non-linearized in the axial direction and viscously diffused on a small
radial length scale. The latter result demonstrates that the weak viscosity is pervasive,
although smaller in magnitude than the driving effect of the axial pressure gradient,
and confirms the conjecture of Hegde et al. (1986). These results are a generalization
of those by Flandro (1995b) and Majdalani & Van Moorhem (1997, 1998).

The amplitude of the transient vorticity distributions described by Kirkkopru et al.
(1995), and in the present work are O(M−1) larger than that of the Culick (1966) steady
solution. It follows that there will be a relatively large transient axial shear stress
on the cylinder surface, which can be calculated from equation (5.33), particularly
for smaller M values. This result has important consequences for applications of the
theory to solid rocket motor combustion.

One can speculate that the large transient shear stresses will impact the burning
rate of a propellant which is the source of the ‘injected’ fluid used in the present
model. Perhaps there is a direct relationship between the effect of surface shear stress
transients, predicted in the present work, and erosive burning concepts used in the
solid rocket engineering literature (Williams 1985).

The linear acoustic pressure field in our theory is found independently of any
vorticity distribution present in the cylinder. It is mathematically decoupled from the
vorticity subsequently generated by the inviscid interaction between the axial pressure
gradient and the fluid injected at the wall. As a result, the pressure field is determined
from an irrotational formulation, using a homogeneous wave equation with non-
homogeneous boundary conditions. The solution, composed of a forced (Helmholtz)
response and eigenfunctions (travelling waves) resembles what one measures in rocket
motor models. However, the total axial velocity response arises from the co-existing
acoustic and rotational flow fields of equal magnitude. The latter includes the ‘shear
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waves’ or vorticity distribution. The associated radial gradient cannot be predicted
from acoustic stability theory.

The conceptual approach used here has been extended by Staab et al. (1999) to
disturbances driven by sidewall injection transients, rather than those applied at the
closed endwall (Zhao & Kassoy 1994). The former type of disturbance emulates the
effects of propellant burning rate variations in solid rocket motors. These methods
have also proved effective for studying three-dimensional flow responses to non-
axisymmetric boundary disturbances, Kassoy et al. (1997), Staab & Kassoy (1996),
and Staab (1998).

Appendix. Solution to a related model problem
The nonlinear coupled system in (5.45) is sufficiently complex to require a compu-

tational solution. In order to develop an effective numerical approach, it is desirable
to consider the solution to an elementary model problem with related properties. A
simple Fisher equation (Fisher 1936) with appropriate periodic initial and boundary
conditions can be used:

∂U

∂z
=
∂2U

∂y2
+ νU2, (A 1)

initial condition:

U(0, y) =

{ − sin(t− y) for 0 6 y 6 t
0 for y > t,

(A 2)

boundary condition:

U(z, 0) = − sin(t). (A 3)

When the parameter t is increased, the non-zero portion of the initial condition is
spread farther into the y-domain. In the spirit of (5.45), the multiple-scale independent
variables are related by y = Ω2z and Ω � 1.

An analytical solution for linear diffusion (ν = 0) is constructed for the odd
extension of (A 1)–(A 3) for the domain 0 < y < ∞:

U(y, z) = − 1

2
√
πz

∫ t

0

sin(t− y′)
[
e−(y−y′)2/4z − e−(y+y′)2/4z

]
dy′

− y

2
√
π

∫ z

0

sin t

(z − z′)3/2
e−y

2/4(z−z′) dz′, y > 0. (A 4)

A quasi-steady solution form U(y, z) = − sin(t − y)e−z can be recovered by taking
the limits (y ± t)/2√t)→ ±∞ simultaneously. Physically, this means that the solution
has a quasi-steady form at specific value of t if y lies between y = 0 and the inner
edge of a diffusive boundary layer centred at y = t which is needed to smooth the
discontinuous slope of the initial condition (A 2) and (A 3) at that location. Inside
the diffusive layer, the solution is given by the full form of (A 1). The diffusive layer
thickness is δ ∼ O(

√
z/Ω2).

The solution to (A 1)–(A 4) along the locus y = Ω2z, for ν = 1 and Ω2 ≈ 66, has
been found from a computational analysis based on a method of lines implementation
similar to that described in § 6. The solid line in figure 17 describes the linear
solution when t = 100 obtained from (A 1). An analogous numerical result (ν = 0)
is indistinguishable from the analytical solution on the scale of the graph, thus
verifying the numerical code. The linear solution shows regular, nearly harmonic,
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Figure 17. Solution U vs. z for the nonlinear model problem on the locus y = Ω2z with Ω2 ≈ 66
for ν = 1 (dashed-dot curve) and ν = 0 (solid line).

–1.5 –1.0 0 0.5 1.0
0

0.4

0.8

1.6

1.2

–0.5 1.5

2.0

Figure 18. Solution U vs. z for the nonlinear model problem on the locus y = Ω2z with Ω2 ≈ 66
for ν = −1 (dashed-dot curve) and ν = 0 (solid curve).

spatial oscillations that decay until the diffusive layer is reached near z ≈ 1.5. There
the solution makes a rapid transition to a vanishingly small value for z > 1.5. The
solution also shows that the peak with location near z ≈ 1.5 is larger in magnitude
than the nearest peak (z ≈ 1.4). This has been seen in the full numerical solution in
figure 9.

In comparison the dashed-dot line represents the nonlinear numerical solution for
ν = 1. The frequency is nearly identical to the linear solution. However, the drift of the
solution toward large positive value of U is due to the positive definite source effect
of νU2. Again the deviation from the pattern of oscillations near z ≈ 1.5 is associated
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with the diffusive layer behaviour. Given the parameters used in the calculation, the
diffusive layer thickness with respect to the z-coordinate is about 0.1. The analogous
results for ν = −1, corresponding to a nonlinear sink, are given in figure 18. There is
no expectation of symmetry.

The basic properties of the model problem solution can be used to develop an
effective numerical method for the solution of (5.45).
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